3上升与下落过程具有对称性,如在同点速度等值反向等。△xt的平方
折叠性质
重力加速度g的方向总是竖直向下的。在同一地区的同一高度,任何物体的重力加速度都是相同的。重力加速度的数值随海拔高度增大而减小。当物体距地面高度远远小于地球半径时,g变化不大。而离地面高度较大时,重力加速度g数值显著减小,此时不能认为g为常数。
距离地面同一高度的重力加速度,也会随着纬度的升高而重力加速度变大。由于重力是万有引力的一个分力,万有引力的另一个分力提供了物体绕地轴作圆周运动所需要的向心力。物体所处的地理位置纬度越高,圆周运动轨道半径越小,需要的向心力也越小,重力将随之增大,重力加速度也变大。地理南北两极处的圆周运动轨道半径为0,需要的向心力也为0,重力等于万有引力,此时的重力加速度也达到最大。
通常指地面附近物体受地球引力作用在真空中下落的加速度,记为g。为了便于计算,其近似标准值通常取为980厘米/秒^2或9.8米/秒^2。在月球、其他行星或星体表面附近物体的下落加速度,则分别称月球重力加速度、某行星或星体重力加速度。
在近代一些科学技术问题中,需考虑地球自转的影响。更精确地说,物体的下落加速度g是由地心引力f(见万有引力)和地球自转引起的离心力q(见相对运动)的合力为物体的质量;w为地球自转的角速度;re为地球半径;h为物体离地面的高度;嗞为物体所在的地球纬度。g。地球重力加速度是垂直于大地水准面的。在海平面上g随纬度变化的公式(1967年国际重力公式)为:
.005278895sin嗞
0.000023462sin嗞)厘米/秒。
在高度为(1930年国际重力公式)同h和嗞有关,即
..000006sin2嗞
-0.0003086h)厘米/秒,
式中h为以米为单位的数值。
最早测定重力加速度的是伽利略。约在θ,θ是斜面的倾角。测量重力加速度的另一方式是阿脱伍德机。1784年,g.阿脱伍德将质量同为m的重块用绳连接后,放在光滑的轻质滑车上,再在一个重块上附加一重量小得多的重块m